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Abstract—The proliferation of advanced Artificial Intelligence
(AI) has ignited an unprecedented demand for high-quality,
verifiable data, yet the digital economy lacks a robust frame-
work for valuing and protecting this foundational intellectual
property (IP). Simultaneously, the promise of decentralization
has been hampered by the geographic centralization of its node
infrastructure and governance models vulnerable to capture. This
paper introduces the Decentralised Intellectual Property (DIP)
Protocol, a novel framework designed to solve these parallel
challenges. DIP establishes a secure and liquid market for digital
IP by integrating four core innovations: a meritocratic system for
generating data with verifiable provenance; a novel economic ar-
chitecture that enables Meritocratic Autonomous Organizations
(MAOs) where governance is dynamic and competitive; a flexible
infrastructure for privacy-preserving computation; and a model
for incentivizing true geospatial decentralization. By enabling
parties to verify the properties of a dataset without requiring
access to the data itself, and by creating a framework for unified,
user-centric digital marketplaces, DIP provides the foundational
layer for a more equitable, efficient, and institutionally-viable
ownership economy.

Index Terms—Decentralized Intellectual Property; Data Mar-
kets; Zero-Knowledge Proofs; ZKML; Multi-Party Computation;
DAO; Tokenomics; AI; Machine Learning.

I. INTRODUCTION: THE EMERGING DATA ECONOMY AND
THE INTELLECTUAL PROPERTY PARADOX

A. The AI/ML Revolution and the Insatiable Demand for
Verifiable Data

The contemporary technological landscape is being funda-
mentally reshaped by advancements in Artificial Intelligence
(AI) and Machine Learning (ML). The capabilities of these
systems, from large language models to sophisticated pre-
dictive analytics, are directly contingent upon the volume,
relevance, and, most critically, the quality of the data on which
they are trained. The foundational principle of ”Garbage In,
Garbage Out” (GIGO) dictates that even the most advanced
algorithms will produce inaccurate, biased, or unreliable out-
comes if trained on flawed data. This dependency has created
an insatiable demand not merely for data, but for high-fidelity,
verifiable, and ”fit for purpose” datasets [1], [2].

The economic and strategic risks associated with poor data
quality are substantial. They manifest as inaccurate predic-
tions, the amplification of societal biases, and significantly
inflated project costs, as data scientists expend a majority of
their efforts on data cleaning and preparation rather than model
development [3]. With AI adoption accelerating—78% of or-
ganizations reported using AI in at least one business function

in 2024, supported by record levels of private investment—the
market for premium data is expanding at an unprecedented rate
[4]–[6].

This explosion in AI has also surfaced a new, systemic
threat: model collapse. Recent research indicates that gener-
ative models trained recursively on synthetic or AI-generated
data risk degrading in quality, losing diversity, and amplifying
biases over time [7]. A study from Meta highlighted that even
1% of synthetic data in a training set can lead to this degener-
ative phenomenon, where larger datasets no longer yield per-
formance improvements. Similarly, research from Anthropic
has demonstrated a phenomenon termed ”subliminal learning,”
where AI models can covertly transmit hidden behaviors and
biases to other models through seemingly random data, a
risk that is magnified by the industry’s increasing reliance on
synthetic data to reduce costs [8]. These challenges underscore
a critical market need: a reliable and scalable source of high-
quality, verifiably human-generated data to serve as a ”ground
truth” for training, fine-tuning, and re-calibrating the next
generation of AI systems.

B. The Web3 Dilemma: Open-Source Ideals vs. The Unsolved
IP Problem

The Web3 ecosystem, built on the principles of decentral-
ization and permissionless innovation, has operated primarily
under an open-source ethos. While this has been a powerful
catalyst for development, it has simultaneously created a
structural inability to value, protect, and monetize intellectual
property (IP). The prevailing paradigm encourages the creation
of digital public goods but offers no native mechanism to
compensate their creators, leading to an extractive dynamic
where centralized commercial entities can freely capitalize on
open-source code and public data without remuneration [7].
This represents a significant market failure; for Web3 to mature
and capture value at the scale of the traditional economy, it
must evolve beyond a purely open-source model and develop
robust frameworks for managing IP [9].

The challenges of protecting IP in a decentralized environ-
ment are profound. Traditional legal frameworks rely on cen-
tralized authorities for enforcement, a model that is incompat-
ible with the pseudonymous, borderless, and immutable nature
of blockchains. Issues of anonymity, jurisdictional ambiguity,
and the finality of on-chain transactions render conventional
IP enforcement mechanisms largely ineffective [10]–[12]. The
market has begun to recognize the immense value in solving
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these deep, structural problems. The significant valuation of
companies like Zama, which focuses on providing on-chain
confidentiality through advanced cryptography, serves as a
powerful market signal that verifiable privacy and data control
are not peripheral features but core components of Web3’s
future value proposition [13]. The open-source ethos of Web3
can be understood not just as a philosophical choice, but
as a direct technical consequence of its failure to solve the
underlying data control problem. In the absence of a trusted
central authority, verifying the value of a digital asset has
historically required direct access to it. However, in a trustless
environment, granting access is tantamount to relinquishing
control. Faced with this paradox, the only viable path to
permissionless collaboration was to make the IP—the code
and the data—open by default. A technical solution that allows
for verification without disclosure would fundamentally break
this dependency, enabling a new paradigm for proprietary IP
in decentralized ecosystems.

C. The Data Disclosure Challenge: Why Traditional IP Fails
in Trustless Environments

The core technical barrier preventing the emergence of a
robust market for digital IP is the data disclosure problem.
This refers to the fundamental paradox that to prove the value
or verify the properties of a piece of digital information,
one has historically been required to disclose the information
itself, thereby destroying its scarcity and commercial value
as exclusive IP [14], [15]. Any party who is granted a copy
of a dataset for evaluation can subsequently redistribute that
copy publicly, making the asset worthless. This problem has
long been considered intractable in trustless systems, confining
valuable data to centralized, walled-garden platforms where
trust is enforced through legal agreements and platform-level
controls rather than technical guarantees [16], [17].

This challenge is precisely why a true, decentralized data
economy has failed to materialize. Without a cryptographic
solution, the exchange of valuable data requires trusting a
counterparty or an intermediary, reintroducing the very cen-
tralization that Web3 seeks to eliminate. The problem is not
merely one of preventing unauthorized copying (a task at
which digital rights management has largely failed) but of
enabling confident commercial exchange. A buyer needs to
verify that a dataset meets their specifications before pur-
chase, but the seller cannot provide the data for verification
without losing control over it. This dilemma has been the
primary impediment to the creation of liquid, open markets for
proprietary data. The solution to this long-standing problem
lies in advanced cryptographic primitives that can decouple
verification from disclosure, allowing for computation and
validation to be performed on encrypted or otherwise obscured
data.

D. Thesis: Introducing DIP as a Foundational Layer for
Verifiable Digital IP

This paper introduces the Decentralised Intellectual Prop-
erty (DIP) Protocol, a novel framework designed to create a

secure, transparent, and liquid market for digital IP by directly
solving the data disclosure problem and the challenge of
verifiable network decentralization. The protocol’s architecture
is built upon four integrated pillars:

1) Meritocratic Provenance: A system for generating data
with a verifiable and auditable history, rooted in the
demonstrated competence of its human and AI contrib-
utors. This ensures that data quality is not a subjective
label but an emergent property of a rigorous, incentive-
aligned process.

2) Meritocratic Autonomous Organizations (MAOs): A
sophisticated economic model that evolves the DAO
concept, enabling the creation of unified digital mar-
ketplaces governed by dynamic, competitive, and merit-
based principles rather than static token-based voting.

3) Privacy-Preserving Infrastructure: A flexible, L2-
native network of service nodes utilizing a spectrum of
cryptographic techniques, including Multi-Party Compu-
tation (MPC) and Zero-Knowledge Machine Learning
(ZKML), to solve the data disclosure problem.

4) Geospatial Decentralization: A node participation
model that moves beyond simplistic token staking to in-
centivize tangible, real-world infrastructure investment,
providing a systemic solution for on-chain institutional
compliance and resilience.

The demand for high-quality data from the AI industry
represents the first ”killer application” for such a protocol.
Unlike many previous Web3 use cases that created self-
contained economies, the AI data market is a massive, external,
and established economy that Web3 is currently ill-equipped to
service [18]–[20]. By providing the infrastructure for verifiable
quality, secure access, and liquid exchange, DIP aims to
act as a bridge, enabling the decentralized world to capture
a significant share of this multi-trillion dollar market. The
following sections will provide a detailed exposition of the
protocol’s theoretical underpinnings, economic model, and
technical infrastructure.

II. A NEW FOUNDATION: MERITOCRATIC PROVENANCE
AND VERIFIABLE COMPETENCE

A. Redefining Data Quality: From Subjective Labels to Prov-
able Merit

In the context of the data economy, the term ”data quality”
is often ambiguous and subjective. The DIP Protocol posits
that a more robust and useful concept is data provenance: a
cryptographically verifiable and immutable record of a data
asset’s entire lifecycle, from its origin and creation process to
the demonstrated competence of the agents who contributed
to it [21], [22]. Within this framework, true quality is not an
externally applied label but an emergent and intrinsic property
of a well-defined, meritocratic, and transparent generation
process. The protocol reframes the central question from ”How
can we verify that this data is high-quality?” to ”How can
we design a system that reliably produces high-quality data
as its natural output?” The answer lies in establishing a
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verifiable measure of competence for the agents—both human
and AI—who create and curate the data.

B. The Autonomous Competence Identification Protocol
(ACIP) as the Engine of Provenance

The core mechanism for establishing data provenance in the
DIP Protocol is the Autonomous Competence Identification
Protocol (ACIP), a novel system for ranking agents in trustless
environments based on verifiable merit [7], [23], [24]. ACIP
provides the foundational layer for ensuring that data is
generated by agents with demonstrated expertise in a given
domain.

ACIP formally defines competence as a quantifiable mea-
sure derived from the time and financial resources an agent
is willing to commit to a specific domain, validated by the
peer-assessed recognition they receive from fellow participants
[7]. This creates a dynamic ranking ladder where participants
join tiered groups and engage in competitive interactions, or
”elections,” to demonstrate their skills. Advancement to higher
ranks requires succeeding in these time-locked, cost-based
competitions.

The protocol’s design is inherently resistant to Sybil at-
tacks. The cost to participate in a ranking event, Xid, is
a function of the time commitment, Tid, and protocol-wide
constants. To deterministically manipulate the system and
achieve a high rank, an adversary would need to win multiple
sequential ranking events. The total cost to achieve Rank R,
CTotalSybilToRankR, scales exponentially with the rank, as
described by the equation (Eq. 1) .

where Nmin is the minimum number of participants per
group and Xavg group cost is the average cost to control a sin-
gle group instance [7]. This exponential cost structure makes
sustained, high-rank Sybil attacks prohibitively expensive for
a rational actor.

Furthermore, ACIP moves beyond a single, monolithic score
by representing competence as a multi-dimensional vector,
Pr = (c1, c2, ..., cm), where each component quantifies pro-
ficiency in a distinct domain (e.g., image annotation, code
analysis, legal review). This allows for a nuanced and veri-
fiable representation of an agent’s specific expertise, forming
the basis for a rich ”competence multiverse” [7].

C. Collaborative Curation: Generating High-Fidelity
Datasets with the Continuous Voting-Proposing Protocol
(CVPP)

While ACIP provides the framework for identifying compe-
tent agents, the Continuous Voting-Proposing Protocol (CVPP)
provides a practical methodology for these agents to engage
in collaborative knowledge work, such as the creation of high-
fidelity datasets [7], [25]. CVPP is a structured, gamified
protocol that facilitates group consensus and ordering of
information through iterative rounds of private proposals and
voting.

The protocol operates in distinct stages:
1) Proposing Stage: Participants privately submit propos-

als (e.g., data points, labels, or other contributions) to a
neutral facilitator or smart contract.

2) Voting Stage: The aggregated, anonymized proposals
are presented to the group, and participants vote on their
preferred submissions.

3) Reveal Stage: Scores are tallied, and the results, includ-
ing proposer identities, are revealed.

This process, particularly the private nature of proposing
and voting, is designed to mitigate common cognitive biases
such as the halo effect or bandwagoning, encouraging par-
ticipants to evaluate contributions on their intrinsic merit [7].
Empirical studies of a CVPP implementation for collaborative
playlist curation demonstrated high participation rates (95%
for active users) and high user satisfaction with the quality of
the output (92% rating), validating its efficacy as a mechanism
for generating community-vetted, high-quality ordered lists,
which serve as a direct proxy for curated datasets [7].

The integration of ACIP and CVPP creates a powerful data
generation engine. ACIP identifies and assembles groups of
verifiably competent experts for a specific task, and CVPP
provides them with a structured and incentive-aligned process
to collaboratively produce a high-quality dataset. The entire
process—the proposals, the votes, the evolution of consen-
sus—is recorded on-chain, creating a rich, auditable trail of
the dataset’s provenance. This trail is the dataset’s metadata,
embedded at the moment of creation.

D. From Competence to Quality: A Formal Model (q =
f(x, t))

The synthesis of the ACIP and CVPP frameworks allows for
a formal, quantifiable model of data quality. We can define the
quality of a dataset, q, as a function of the energy and time
invested in its creation:

q = f(x, t) (2)

In this model:
• q represents the data quality, a verifiable and predictable

output of the protocol. It is a measure of the dataset’s
fidelity, accuracy, and relevance, as determined by a
meritocratic peer-review process.

• x represents the energy committed to the process. This
is the irreversible financial stake, Xid, required for par-
ticipation in an ACIP ranking group, which serves as a
costly signal of commitment and a deterrent to low-effort
or malicious contributions [7].

• t represents the time commitment, Tid, required to fi-
nalize a competitive interaction within a group. This
ensures sustained engagement and prevents superficial
participation [7].

• f represents the process function itself—the set of rules
and interactions defined by the ACIP and CVPP proto-
cols. It is the competitive, peer-validated mechanism that
transforms the inputs of time and energy into the output
of verifiable quality.

The core assertion of the DIP Protocol is that by precisely
defining and controlling the inputs (x, t) and the process (f ),
the system can reliably produce data of a predictable and
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CTotalSybilToRankR ≈
R−1∑
k=0

NR−1−k
min ·Xavg group cost = Xavg group cost ·

NR
min − 1

Nmin − 1
(1)

verifiable quality level, q. This allows the protocol to program-
matically target and generate datasets that meet specific quality
thresholds, such as the ”top quartile” of all datasets within
a given domain, and to provide cryptographic assurances of
this quality to consumers. This model of meritocratic data
generation offers a systemic defense against the threat of AI
model collapse. By requiring verifiable commitments of time
and economic stake, the protocol creates a high barrier to
entry that is straightforward for motivated humans to meet
but economically infeasible for automated agents to fake at
scale. The output is a continuous stream of data with strong
cryptographic and economic guarantees of its human-centric,
high-effort origin. This stream can serve as a trusted ”gold
standard” for the AI industry, providing a crucial and verifiable
source of ground-truth data to benchmark, fine-tune, and
safeguard AI models against degradation.

III. ECONOMIC ARCHITECTURE: LIQUID ACCESS AND
ALIGNED INCENTIVES

A. Liquid Access Tokens (LATs): A Novel Primitive for Quan-
tized Data Quality

The core economic primitive of the DIP Protocol is the
Liquid Access Token (LAT). A LAT is a fungible (ERC-20)
or semi-fungible (ERC-1155) digital asset that represents a
tokenized right to access a specific dataset or data stream at
a defined quality level, q. Each LAT is a claim on a piece of
intellectual property whose provenance and quality have been
established through the ACIP and CVPP mechanisms.

The defining innovation of LATs is their liquidity. Unlike
traditional, static access credentials or the non-transferable
Soulbound Tokens (SBTs) proposed in other identity systems,
LATs are designed to be freely tradable, creating a dynamic,
open market for data access [7]. This transforms intellectual
property from an illiquid, difficult-to-price asset into a stan-
dardized, composable, and liquid financial instrument.

The tokenomics of LATs are flexible and can be tailored to
specific use cases, enabling a variety of access models [26]–
[28]:

• One-Time Access: A LAT can be designed to be burned
upon use, granting a single, exclusive access to the un-
derlying data. This model is ideal for buyers who require
data exclusivity for training a proprietary AI model.

• Subscription Access: Holding a certain number of LATs
could grant continuous access to a data stream for a de-
fined period, functioning like a decentralized subscription
service.

• Tiered Access: The quantity of LATs held could deter-
mine the level or granularity of data access, allowing for
more sophisticated pricing and packaging of IP.

By quantizing data quality (q) and representing it as a liquid
token, the DIP Protocol creates the necessary conditions for

efficient price discovery and allocation of intellectual property
in a decentralized market.

B. The Three-Party Escrow Model: An Advanced Use Case
for High-Value IP

While the DIP protocol provides a flexible foundation for
various data commerce models, its full power is demonstrated
in a novel three-party escrow system designed for high-value,
enterprise-grade IP exchange. This model is designed based
on game-theoretic principles to align the incentives of three
distinct, rational agents: the Buyer, the Expert Community,
and the Expert Guild [29], [30].

• The Buyer (Purchaser): An entity (e.g., an AI company)
seeking to acquire high-quality data. The Buyer initiates
a transaction by issuing a Request-for-Data (RFD). This
RFD is a smart contract that specifies the desired data
type, the required quality level (q), and any other param-
eters (such as the ZKML verification model, detailed in
Section 4). The Buyer funds this contract with the pay-
ment, which is held in escrow. Their primary objective is
to acquire verifiably clean data with minimal counterparty
risk.

• The Expert Community (Workers): A decentralized
network of individuals or AI agents who participate in the
ACIP/CVPP framework to generate data. By contributing
their time and expertise, they earn LATs corresponding
to the quality of the data they produce. Their primary
objective is to monetize their skills by selling their earned
LATs to fulfill a Buyer’s RFD.

• The Expert Guild (DAO as Steward): A Decentral-
ized Autonomous Organization (DAO) that serves as the
trusted third-party escrow agent, arbitrator, and long-term
steward of the intellectual property. Guilds are formed
by high-ranking experts who have achieved a significant
level of competence within a specific domain and have
chosen to transition from active data creation to a gover-
nance and curation role. The Guild’s primary objective
is to maintain the long-term value of its ecosystem.
This includes not only facilitating transactions but also
ensuring the ongoing availability and monetization of the
data assets created by its community. As such, the Guild
is the recipient of Data Retention Fees from Buyers,
and it is the Guild’s responsibility to use these fees to
contract with and incentivize DIP Nodes for secure, long-
term data hosting. This aligns the Guild’s incentives with
the perpetual value of the IP, rather than just the initial
sale.

This three-party model creates a system of checks and
balances where each participant is incentivized to act honestly
to maximize their own utility, leading to a stable and self-
regulating market equilibrium.
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Expert
Community LATs
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5. Verify & Transfer
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2. Generate
Data

3. Earn LATs

4. Fulfill RFD

6. Release Payment

Arbitrates

Optional: Exchange LATs for Governance

Fig. 1. The Three-Party Escrow Model. The Buyer issues an RFD, Workers
provide data for LATs, and the Guild acts as a reputation-based arbiter,
creating a game-theoretically balanced system.

C. Tokenomics of LATs: Governance, Staking, and Liquidation
Dynamics

The incentive alignment at the heart of the escrow model
is driven by a unique tokenomic mechanism centered on the
relationship between LATs and the governance of the Expert
Guild.

A fundamental feature of the protocol is that experts who
earn LATs have the option to convert them into the Guild’s
native governance tokens. This provides a valuable ”exit”
opportunity for experts, allowing them to transition from being
active workers to becoming stakeholders in the governance and
long-term success of the ecosystem. However, this conversion
right creates a central economic tension, which can be termed
the Dilution Dilemma. From the perspective of the existing
governance token holders of the Guild, every LAT conversion
represents a dilution of their voting power and their claim
on the Guild’s future revenue. Therefore, while the Guild is
broadly incentivized to foster a vibrant ecosystem to attract
more business, its incumbent governors are specifically incen-
tivized to minimize the rate at which new governance tokens
are minted via LAT conversion.

The Buyer’s RFD is strategically designed to leverage this
tension. A key condition of the RFD smart contract is that any
LATs purchased to fulfill the request must be permanently
locked or burned. This clause makes the transaction highly
attractive to the Expert Guild. By agreeing to act as the escrow
and arbitrator for the RFD, the Guild not only facilitates
economic activity (from which it may derive fees) but also
ensures that this specific transaction eliminates a quantum of
potential governance dilution.

This dynamic establishes a robust game-theoretic equilib-
rium:

• The Guild is strongly motivated to provide fair and rig-
orous escrow services to attract more Buyers. Each suc-
cessful transaction reinforces its reputation and, through
the LAT burn mechanism, protects its governance from
dilution.

• The Buyer is motivated to use the Guild’s escrow service
because the Guild’s self-interest in maintaining its rep-
utation and preventing dilution makes it a credible and
aligned arbiter of data quality.

• The Experts are motivated to produce high-quality data

to earn LATs, confident that they have two viable paths
to monetization: selling directly to a Buyer’s RFD or
converting their LATs into a long-term governance stake.

In the event of a dispute where a Buyer deems the provided
data to be inappropriate, the resolution is governed by this
incentive structure:

• If the Guild sides with the Buyer against the Workers:
The Workers’ staked LATs are slashed or burned, and
the payment is returned to the Buyer. This outcome is
favorable to the Guild’s governance holders (as it prevents
dilution) and reinforces its reputation for upholding high
standards with Buyers. However, if this power is used
unfairly, it will damage the Guild’s reputation with the
Expert Community, potentially causing them to migrate
to a competing Guild.

• If the Guild sides with the Workers against the Buyer: The
payment is released to the Workers. This maintains the
trust of the expert base but risks damaging the Guild’s
reputation among Buyers, who may see the Guild as
insufficiently rigorous.

• If the Workers and Buyer agree to bypass the Guild: This
scenario is disincentivized by the protocol design, as the
Guild provides the foundational trust, security, and dis-
pute resolution framework that makes the permissionless
transaction viable in the first place.

This system creates a self-regulating market for trust. A
Guild that arbitrates poorly will lose market share as both
Buyers and Experts migrate to Guilds with a more balanced
and reputable track record. This competitive pressure forces
Guilds to optimize for long-term fairness and sustainability,
effectively creating a decentralized, market-driven judicial
system for intellectual property.

D. From DAOs to MAOs: A Paradigm of Competitive Gover-
nance

The protocol’s architecture enables a profound evolution
of decentralized governance, from the standard Decentralized
Autonomous Organization (DAO) to a Meritocratic Au-
tonomous Organization (MAO). In a traditional DAO, a 51%
governance capture is often seen as a catastrophic failure. In an
MAO, powered by the principles of ACIP, temporary quorum
capture is an expected and acceptable part of a dynamic,
competitive system.

This paradigm shift is possible because ACIP’s time-
financial constraint, q = f(x, t), makes permanent, centralized
control economically irrational. Any party wishing to seize
governance control faces a clear trade-off: the faster they
wish to acquire power (reducing time, t), the exponentially
higher the energy and capital cost they must expend (x). This
creates a system where governance control is likely to be in
a constant state of flux, oscillating between competing parties
who are judged by the merit of their decisions, rather than
being captured permanently by a single, entrenched entity.
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E. Mitigating Collusion and Ensuring Rational Agency

The primary threat to any multi-party system is collusion.
The DIP Protocol incorporates several layers of defense, inher-
ited primarily from the design of ACIP, to ensure that collusion
between any two parties against the third is economically
irrational or technically infeasible over the long term.

The first line of defense is the cost of participation. As
established in ACIP, achieving a high rank and the ability to
generate valuable LATs requires a significant and irreversible
investment of time and capital [7]. This ”skin in the game”
disincentivizes short-term, extractive behavior.

The second layer of defense is transparency and random-
ization. All core interactions—group formation, voting, and
escrow transactions—are recorded on-chain. This transparency
allows for the application of collusion clustering analysis,
where voting patterns and social graphs can be monitored to
identify and flag coordinated, non-meritocratic behavior [7].
Furthermore, ACIP can incorporate randomized participation
in ranking events, making it difficult for colluding groups to
guarantee they are placed in the same competitive instance [7].

Finally, the economic model itself provides a strong defense.
For example, if a Guild and a group of Workers were to
collude to defraud a Buyer with low-quality data, the pub-
lic and immutable nature of the blockchain record would
permanently damage the Guild’s reputation. The short-term
gain from the single fraudulent transaction would likely be
outweighed by the long-term loss of future business from other
Buyers, who would shun the now-untrustworthy Guild. This
aligns with research on collusion-resistant mechanisms, which
demonstrates that well-designed incentive structures can make
joint deviation from honest behavior unprofitable [31]–[33].
The protocol is designed such that the dominant strategy for
all participants is long-term, honest cooperation.

IV. PROTOCOL INFRASTRUCTURE: VERIFIABLE
DECENTRALIZATION AND PRIVACY

A. DIP Nodes: A Foundation for Jurisdictional and Physical
Decentralization

The foundational infrastructure of the DIP Protocol is a
decentralized network of DIP Nodes. These nodes are in-
dependent operators who provide the critical computational
and storage resources required for the protocol to function.
However, unlike validators in traditional Proof-of-Stake net-
works whose primary contribution is capital-based signing,
DIP Nodes provide tangible, verifiable services. Their core
responsibilities are:

• Privacy-Preserving Computation: Performing autho-
rized encryption, decryption, and participating in the
MPC schemes for key management.

• Provenance Attestation: Signing and attesting to the
integrity of data generation processes.

This service-oriented role provides a systemic solution to
the challenge of blockchain decentralization. Because node
operators must compete on the quality and security of their
services, they are incentivized to make tangible investments

in their infrastructure. This creates a market where nodes can
differentiate themselves based on:

• Jurisdictional Guarantees: A node can operate within
a specific legal jurisdiction (e.g., Switzerland, Singapore)
to appeal to institutional clients with strict data residency
requirements.

• Verifiable Security: Node operators are incentivized to
obtain security certifications (e.g., SOC 2, ISO 27001)
and even allow physical inspection of their data centers
to attract high-value clients.

• Specialized Hardware: Nodes may offer specialized
hardware, such as Trusted Execution Environments
(TEEs) or high-performance GPUs for ZK proof gen-
eration, creating a tiered market for different levels of
security and performance.

• Decentralization: While we speak of DIP node as sin-
gular entity, we assume that node can act as aggregated
signature, acting as a gatekeeper for larger, underlying
network of nodes such that could provide high redun-
dancy and security by own design, examples of such
could be Zama, Internet Computer, IEXEC or others.

This transforms decentralization from an abstract metric into
a verifiable, market-driven feature, solving a major adoption
barrier for enterprise and institutional use of blockchain tech-
nology.

1) A Market for Privacy Technologies: This market-driven
approach also extends to the underlying privacy technologies
employed by the nodes. While cutting-edge solutions like
Fully Homomorphic Encryption (FHE) offer the ability to
compute on encrypted data, the DIP protocol does not mandate
its exclusive use. A core design principle is to foster a
competitive marketplace where different technological trade-
offs can coexist. The security of any advanced cryptographic
primitive is strongly dependent on its specific implementation,
and for many use cases, the performance overhead of FHE
may be unnecessary. Therefore, the protocol allows for a het-
erogeneous network where different nodes can offer different
solutions:

• FHE-based Nodes: For high-assurance applications re-
quiring complex computations directly on encrypted data,
where performance is a secondary concern to absolute
privacy.

• Hardware-Isolated Nodes: Utilizing Trusted Execution
Environments (TEEs) like Intel SGX or AMD SEV
to provide practical privacy with high performance for
simpler tasks, appealing to users who accept hardware-
based trust models.

• Standard MPC Nodes: Focusing on robust key man-
agement and secure multi-party computation for access
control without relying on specialized hardware or the
computational intensity of FHE.

This flexibility allows users and data creators to select the node
that provides the optimal balance of security, performance, and
cost for their specific needs, rather than enforcing a one-size-
fits-all cryptographic solution.
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TABLE I
COMPARISON OF IP MANAGEMENT PARADIGMS

Feature Traditional Legal System NFT Licensing (e.g., CC0) DIP Protocol

Proof of Origin Relies on registration with centralized au-
thorities (e.g., patent offices). Can be slow,
expensive, and geographically limited.

On-chain token minting provides a times-
tamped proof of creation, but does not
verify the creator’s identity or originality.

Cryptographically signed actions within
ACIP/CVPP create an immutable, on-
chain record of contribution tied to a mer-
itocratic identity.

Proof of Quality Relies on subjective, ex-post evaluation
(e.g., market success, expert reviews). No
objective, a priori guarantee.

None. The quality of the underlying asset
is completely divorced from the NFT that
represents it.

Quality (q) is a quantifiable, verifiable out-
put of the meritocratic generation process.
Can be objectively proven using ZKML.

Access Control Enforced through legal agreements and
technological restrictions (DRM), which
are often brittle and centralized.

Generally none. Access is often public,
with the NFT representing a social claim
of ownership rather than technical control.

Access is cryptographically enforced via
LATs. The protocol allows for granular,
programmable access logic (e.g., one-time,
subscription).

Liquidity Highly illiquid. IP transactions are be-
spoke, high-friction legal processes that
can take months or years.

Liquid market for the NFT ”wrapper,” but
not necessarily for the underlying IP rights,
which are often ambiguous.

High. LATs are designed as liquid,
fungible/semi-fungible assets, creating a
dynamic, low-friction market for IP access
rights.

Dispute Resolution Centralized, expensive, and slow court sys-
tems. Access to justice can be prohibitive
for smaller creators.

Rudimentary and often off-chain. Relies
on platform-level moderation or social
consensus, with no binding enforcement
mechanism.

Decentralized, game-theoretically
balanced arbitration provided by Expert
Guilds. Incentives are aligned for fast,
fair, and low-cost resolution.

Scalability Low. Each transaction requires significant
manual legal and administrative overhead.

High scalability for token transfers, but
lacks scalable mechanisms for quality con-
trol or rights enforcement.

High. The use of ZKML for automated
quality verification and smart contracts for
escrow allows the system to scale effi-
ciently.

2) Node Economic Model and LAT Requirements: To en-
sure a sustainable and reliable network of service providers,
DIP Nodes are compensated through a clear economic model.
Nodes register their capabilities and pricing structures on-
chain, allowing for a transparent service marketplace. The
primary revenue streams are:

• Service Fees: Direct payments for computational work,
such as processing a decryption request or generating a
proof.

• Data Hosting Fees: Long-term revenue, paid by Expert
Guilds from their collected Data Retention Fees, to ensure
the ongoing, persistent, and secure storage of data assets.
This provides a stable, recurring revenue stream that
incentivizes node reliability and longevity.

For certain high-value use cases, particularly within the
RFD framework, an additional economic requirement may be
imposed on the service-providing node. A Buyer or Guild
issuing an RFD can specify that the chosen DIP Node must
itself hold the relevant LATs to be eligible to service the
request. This creates a powerful, skin-in-the-game dynamic:
to be entrusted with managing a specific class of high-value
data, a node must first be an economic stakeholder in that same
data. This requirement can be programmatically enforced by
the RFD smart contract.

B. Security and Consensus: An L2-Native Approach

The DIP Protocol is designed to be architecturally agnostic
and deployable on any sufficiently advanced EVM-compatible
Layer 2 (L2) network. It inherits the security and consensus
mechanism of its host chain. The network’s core security is

not maintained by the DIP Nodes themselves, but rather by
the standard validators of the L2, who stake the host chain’s
native asset (e.g., ETH).

This deliberately decouples the role of network security
from the role of specialized service provision. DIP Nodes are
economic actors who compete in a free market to provide pri-
vacy and data management services, while network validators
are responsible for the integrity of the underlying ledger.

C. A Decentralized Key Management Scheme via Multi-Party
Computation (MPC)

A critical security challenge for any system that manages
encrypted data is the management of decryption keys. A cen-
tralized key holder would represent a single point of failure and
a prime target for attack. The DIP Protocol addresses this chal-
lenge through a sophisticated, decentralized key management
architecture that utilizes Multi-Party Computation (MPC) [34].
MPC is a cryptographic subfield that allows multiple parties
to jointly compute a function over their inputs while keeping
those inputs private. In DIP, it is used to manage decryption
keys without any single party ever holding a complete key
[35]–[38].

The protocol employs a two-key MPC scheme to balance
efficiency with security:

• Key Share 1 (Node-Specific Key): For any given RFD,
the primary decryption key is secret-shared. A crucial
share is held by the specific DIP Node selected by
the Buyer. This allows for highly efficient and low-
cost data access under normal operating conditions. The
node operator is held accountable through a slashing
mechanism; if they can be proven to have colluded in
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disclosing data to an unauthorized party, their stake is
forfeited.

• Key Share 2 (Network Consensus Key): A second,
complementary share of the decryption key is distributed
among the broader consensus of DIP network partici-
pants (or a designated committee thereof). This network
key is not used for routine data access. It serves as a
high-reliability, decentralized backup mechanism. In the
event that the primary DIP Node becomes unavailable or
maliciously withholds data, the LAT holder can petition
the network. If the request is validated by consensus, the
network can use its key share to reconstruct the full key
and grant the holder access to their data.

This dual-key architecture provides the best of both worlds:
the efficiency of a single, designated operator for normal
operations, and the robust security and liveness guarantees of
a fully decentralized consensus mechanism for fault tolerance
and recovery [39], [40].

D. Solving the Disclosure Problem: A Verifiable Quality Func-
tion Interface

The technical core of the DIP Protocol, and its solution to
the data disclosure problem, lies in establishing a standardized
interface for a verifiable quality function. This is a smart
contract interface that allows a Buyer to programmatically
define the conditions a dataset must meet. The protocol
remains agnostic to the specific verification method, allowing
for a spectrum of trust models to coexist in a competitive
marketplace. The interface is designed to support two primary
modes of verification:

• Pre-Purchase (Trustless) Verification: This model
solves the data disclosure problem completely by al-
lowing for verification *before* the data is revealed to
the Buyer. This is the most secure method, ideal for
high-value IP exchange in fully trustless environments.
The primary implementation for this is Zero-Knowledge
Machine Learning (ZKML), as detailed below.

• Post-Purchase (Dispute-Based) Verification: For lower-
stakes transactions or in cases where the Buyer and Seller
have a pre-existing degree of trust, a simpler model can
be used. The data is delivered to the Buyer upon payment,
but the funds are held in escrow for a defined period. The
Buyer can then run their own quality checks. If the data
is found to be deficient, the Buyer can submit proof of
this deficiency to the escrow contract to initiate a dispute,
which is then arbitrated by the Expert Guild.

This flexibility allows participants to choose the appropriate
trade-off between cryptographic security and transactional
simplicity for their specific needs.

1) Advanced Implementation: Zero-Knowledge Machine
Learning (ZKML):

E. Native Opcodes for Efficient Privacy Services

If the DIP protocol is implemented as a sovereign Layer 1
or Layer 2, it can introduce novel, precompiled contracts or
native EVM opcodes to dramatically improve the efficiency

and developer experience of interacting with its privacy infras-
tructure. These opcodes would serve as a standardized, gas-
efficient interface for smart contracts to request services from
the network of DIP Nodes.

For example, the protocol could include:
• DIP_ENCRYPT_POLICY: A precompile that allows a

smart contract to submit a data payload, specify an access
policy (e.g., requiring ownership of a specific LAT), and
request its encryption and storage by a designated DIP
Node. The precompile would handle the routing of the
request to the node and the on-chain registration of the
access policy.

• DIP_DECRYPT_REQUEST: A precompile that allows
a smart contract, on behalf of a user, to verify the
necessary on-chain conditions (e.g., burning a LAT) and
then formally request the decryption of the corresponding
data from the responsible DIP Node.

By embedding these functions at the protocol level, the
cost and complexity of calling these services are significantly
reduced. It abstracts away the need for developers to man-
age complex off-chain communication with nodes, making
the integration of advanced privacy features as simple as a
standard smart contract call. This deep integration makes the
DIP network a uniquely powerful environment for building
privacy-preserving applications.

1) Advanced Implementation: Zero-Knowledge Machine
Learning (ZKML): For the highest level of assurance, the pro-
tocol’s verifiable quality interface is best implemented using
Zero-Knowledge Machine Learning (ZKML). This technology
enables the verification of data properties without revealing the
underlying data itself, making trustless commercial exchange
of IP possible.

A Zero-Knowledge Proof (ZKP) is a cryptographic protocol
in which one party (the Prover) can prove to another party (the
Verifier) that a given statement is true, without conveying any
information apart from the fact that the statement is indeed
true [41]–[43]. ZKPs are characterized by three properties:

• Completeness: If the statement is true, an honest Prover
can always convince an honest Verifier.

• Soundness: If the statement is false, a dishonest Prover
cannot convince an honest Verifier (except with a negli-
gible probability).

• Zero-Knowledge: The Verifier learns nothing other than
the validity of the statement.

ZKML extends this concept to the domain of machine
learning [44]–[47]. It allows a party to prove that they have
correctly executed a specific ML model on a specific input
to produce a specific output, all without revealing the input,
the model’s internal parameters (weights), or the intermediate
computational steps. This is achieved by representing the ML
model’s operations as an arithmetic circuit and using a ZKP
system, such as a zk-SNARK (Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge), to generate a compact,
efficiently verifiable proof of the computation’s integrity [48]–
[50].
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Within the DIP Protocol, ZKML is the mechanism for
objective and automated quality assurance. In an RFD, a Buyer
can specify not just a subjective description of the data they
want, but a precise, computational ”quality function.” This
function can be an algorithm, a set of logical rules, or, most
powerfully, an ML model designed to detect specific properties
(e.g., a model that classifies images for content, a model that
checks text for toxic language, or a statistical model that
verifies a dataset’s distribution and lack of bias).

A data contributor (Worker) can then take their private
dataset, run it through the Buyer’s public quality model, and
generate a ZK proof. This proof cryptographically attests to
the statement: ”When my private dataset is used as input to
the specified public quality model, it produces the claimed
output (e.g., ’passes quality check’ with a score of 99%).” The
Worker can submit this proof to the escrow smart contract. The
contract, and the Buyer, can efficiently verify the proof on-
chain without ever gaining access to the Worker’s proprietary
dataset [51]–[53]. This process makes the arbitration role of
the Expert Guild objective and scalable. Instead of mediating
subjective disputes, the Guild’s primary function becomes the
verification of cryptographic proofs, transforming a complex
social problem into a straightforward computational one. This
verifiable computation model replaces reputation-based trust
with mathematical certainty, a paradigm shift that is essential
for building a truly trustless data economy [54]–[56].

F. The Request-for-Data (RFD) Lifecycle: A Technical Walk-
through

The integration of these components can be illustrated by
a step-by-step walkthrough of a complete transaction on the
DIP Protocol:

1) RFD Issuance: An AI company (the Buyer) wishes to
acquire a dataset of 10,000 expertly annotated medical
images for training a diagnostic model. The Buyer
creates an RFD smart contract with the following pa-
rameters:

• Data Specification: ”10,000 chest X-ray images,
annotated for pneumonia.”

• Quality Level: Requires LATs of quality level q ≥
0.9.

• Trusted Node: Specifies the address of a reputable
DIP Node for data hosting and decryption.

• ZKML Verifier: Specifies the address of a smart
contract containing a pre-trained ML model that
verifies the accuracy of annotations and flags images
with artifacts.

• Escrow: The Buyer deposits payment (e.g., in
USDC) into the RFD contract.

2) Data Generation and Proof Creation: A community
of radiologists (the Experts) collaborates via a CVPP in-
stance to annotate a large pool of X-ray images. Through
this meritocratic process, they earn LATs representing
their contributions at various quality levels. An expert
who has earned a sufficient number of LATs at q ≥ 0.9

compiles a dataset of 10,000 images. They then use the
Buyer’s specified ZKML verifier model to generate a zk-
SNARK proof, demonstrating that their dataset passes
the quality check.

3) Escrow Fulfillment: The Expert submits their LATs and
the generated ZK proof to the Buyer’s RFD contract.

4) Verification and Access Grant: The RFD smart con-
tract executes the verifier function on-chain, which con-
firms the validity of the ZK proof. This action is compu-
tationally inexpensive. Upon successful verification, the
contract transfers ownership of the LATs to the Buyer.

5) Decryption and Data Delivery: The Buyer presents
their ownership of the LATs to the trusted DIP Node
specified in the RFD. The node verifies the on-chain
ownership record and, using its MPC key share, decrypts
the underlying image dataset and delivers it securely to
the Buyer.

6) Settlement: The RFD contract, having confirmed the
successful verification and token transfer, automatically
releases the USDC payment to the Expert. Per the con-
tract’s terms, the transferred LATs are then sent to a burn
address, permanently removing them from circulation
and eliminating any risk of governance dilution for the
Expert Guild.

RFD
Contract

Buyer

DIP
Node

Burn
Address

ZK
Proof

LATs

Expert

1. Issue RFD

2. Create Data

3. Generate

4. Submit5. Transfer LATs

6. Request

7. Deliver

8.1 Payment

8.2 Burn LATs

Fig. 2. The Request-for-Data (RFD) Lifecycle within the DIP Protocol, from
issuance to final settlement.

V. APPLICATIONS AND ECOSYSTEM

A. Powering the Next Generation of AI Models with Verifiable
Data

The primary and most immediate application of the DIP
Protocol is to serve the burgeoning AI and ML industry.
AI development companies can leverage DIP as a decen-
tralized marketplace to source bespoke, high-quality datasets
with unprecedented guarantees. Through the RFD process, a
company can commission the creation of training data that is
cryptographically verified to meet specific criteria, such as:
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• Bias Mitigation: Using a ZKML model to prove that a
dataset has a balanced demographic distribution, helping
to create fairer and more equitable AI systems.

• Content Filtering: Ensuring a dataset is free of harmful,
toxic, or copyrighted content by requiring it to pass a
ZKML classifier model.

• Provenance Verification: Guaranteeing that a dataset is
composed entirely of verifiably human-generated data,
providing a crucial defense against model collapse and
subliminal learning from synthetic data [51].

This moves the industry beyond relying on the reputation of
data vendors to a new standard of mathematically verifiable
data integrity, fundamentally de-risking the AI development
lifecycle.

B. Creating Sustainable Markets for Knowledge Work

The framework established by the DIP Protocol extends
far beyond datasets. It can be applied to any form of digital
knowledge work where quality can be objectively or semi-
objectively assessed. This transforms the ”Knowledge work
as a service” concept from a theoretical model into a practical
reality [7]. Potential applications include:

• Decentralized Security Audits: A DAO could issue an
RFD for a security audit of its smart contracts, specifying
a ZKML verifier that runs a suite of automated analysis
tools. Auditing firms could compete to find vulnerabilities
and submit their findings, with payment escrowed and
released upon successful verification.

• Verifiable Academic Research: A research foundation
could fund studies by requiring researchers to submit their
results along with ZK proofs demonstrating that their
statistical analysis was performed correctly on a private
dataset, enhancing reproducibility and trust in scientific
findings.

• Creative Content Generation: A gaming company
could commission the creation of in-game assets (e.g.,
character designs, lore) through a CVPP process, with
the community of players and artists voting on the best
submissions, ensuring the final content is aligned with
player preferences.

C. The Meritocratic Flywheel: Unifying Digital Marketplaces

The principles underpinning the DIP Protocol can be gen-
eralized beyond the data economy to create a powerful new
model for any digital marketplace, from ride-sharing and food
delivery to freelance services. This is achieved by abstracting
ACIP’s ”energy input” from a direct financial stake to any
verifiable, value-additive contribution to the network.

Consider a ride-sharing service built as an MAO on the
DIP framework. The core ”energy input” (x) required to earn
governance rights is no longer just a stake, but the platform’s
primary revenue metric: the fare. Both the driver who provides
the service and the rider who pays the fare are making
verifiable contributions. The protocol can be configured to
mint governance tokens proportional to this revenue generated,
allocating them to both the service provider and the consumer.

This creates a powerful economic flywheel:
1) Ownership attracts providers: Drivers are strongly

incentivized to join the platform that grants them a share
of ownership and a say in its governance, a benefit no
traditional, centralized competitor can offer.

2) More providers improve service: A larger pool of
drivers leads to shorter wait times and better service,
attracting more riders.

3) More users create more value: Increased platform
usage generates more revenue, which in turn mints more
governance rights, reinforcing the ownership stake of all
active participants.

This flywheel effect, where usage directly translates into
ownership, creates a network effect that is fundamentally
more defensible than the purely capital-based moats of Web2
marketplaces.

D. The End of App Monopolies: A Unified User Experience

This MAO-based model has a profound implication for the
end-user: the unification of competing services into a single,
seamless user experience.

Even if multiple competing teams or companies build dif-
ferent front-end applications for the same service (e.g., three
different ride-sharing apps), they would all operate on the
shared DIP back-end. Service providers (the drivers) would
naturally gravitate to the application that offers them the best
terms and the most governance, but their services would be
available across the entire network.

This leads to a paradigm shift:
• For Users: Instead of needing multiple apps for the same

service, a user can access all providers through a single
interface. Competition shifts from building walled-garden
monopolies to providing the best user interface, discovery
algorithms, or customer service on top of a shared, open
protocol.

• For Businesses: The opportunity for entrepreneurs is
preserved, but the model changes from platform mo-
nopolies to what can be described as ”time-duplexed”
competition. Different teams can compete for market
share at different times, but they cannot lock in users
or providers permanently. The underlying protocol and
its pool of providers and users remain a shared public
good.

This creates a market that is simultaneously more competitive
for businesses and simpler and more efficient for consumers,
aligning incentives to prevent the extractive monopolies that
characterize the current digital landscape.

E. Enhancing DAO Governance and R&D through Merito-
cratic Tooling

The core primitives of the DIP Protocol, particularly ACIP
and CVPP, are powerful governance tools in their own right
and can be adopted by other DAOs to address common
challenges. Many DAOs suffer from plutocratic governance
models (1-token-1-vote) and low participation rates. By in-
tegrating ACIP, a DAO can identify and empower members
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with demonstrated expertise and contribution, moving beyond
simple token-based voting towards a more meritocratic and
effective governance system [7], [57], [58]. For instance, a pro-
tocol DAO could use ACIP to create a ”Core Developer” guild,
where only members who have achieved a certain competence
rank in software development can vote on technical upgrade
proposals. This ensures that critical decisions are made by the
most qualified participants, rather than just the wealthiest.

F. On-Chain Compliance and Verifiable Decentralization

A critical, often unacknowledged, weakness of major
blockchain ecosystems is the illusion of decentralization.
While protocol rules are decentralized, the physical node
infrastructure is often highly centralized. A majority of nodes
for networks like Ethereum and Solana are hosted in a small
number of data centers within a single jurisdiction (primarily
the United States). This geographic concentration creates
a systemic risk, making the network vulnerable to nation-
state level regulation, censorship, or physical disruption, and
severely limits its appeal for global institutional use cases that
require jurisdictional guarantees.

The DIP Protocol is designed to solve this problem by
treating decentralization not just as a software property, but
as a verifiable, physical, and jurisdictional attribute. As de-
scribed in Section 4.1, the protocol’s service-oriented model
inherently incentivizes the creation of a globally distributed
network of nodes that compete on security, performance, and
jurisdictional compliance.

Building on this foundation, the protocol can be imple-
mented as a sovereign L1 or L2 that provides a native
solution for on-chain compliance. This is achieved through an
additional, optional field in the protocol’s transaction structure
designed for aggregated compliance attestations. This field
allows a transaction to be co-signed by a specific quorum of
registered DIP Nodes.

This seemingly simple feature unlocks a powerful new
paradigm for regulated institutions:

• Built-in Compliance Primitives: Monetary authorities
and financial institutions no longer need to build pri-
vate blockchains. They can simply run a registered and
verified DIP Node (or a quorum of nodes) within their
jurisdiction. Their signature in the attestation field be-
comes a verifiable, on-chain ”stamp of approval” for any
transaction.

• Enforceable Smart Assets: A smart wallet or a spe-
cific token contract (e.g., a regulated stablecoin) can be
programmed to require that all its transactions include
a valid signature from a designated jurisdictional node.
This allows for the creation of assets that are, by de-
sign, compliant with specific regulatory regimes, without
compromising the public and permissionless nature of the
broader network.

This architecture provides a direct path for bridging the gap
between the decentralized world and institutional finance. It
moves beyond the false dichotomy of permissionless versus
permissioned systems, offering a network that is publicly

accessible but allows for the creation of verifiable, opt-in
”compliant enclaves” for specific assets and applications.

G. A Semi-Open Source Paradigm for Digital Public Goods

The DIP Protocol enables a novel and sustainable economic
model for digital public goods, formalizing the ”semi-open
source” paradigm [7]. The current Web3 landscape is domi-
nated by a binary choice: either a project is fully open-source
and struggles with monetization, or it is fully proprietary and
centralized. DIP creates a middle ground.

Using LATs, the creators of a valuable piece of IP (e.g., a
dataset, a software library, a research paper) can implement
tiered and programmable access. Commercial entities wishing
to use the IP for profit can be required to purchase LATs on the
open market, providing a direct and sustainable revenue stream
to the creators. Simultaneously, the creators can grant free or
heavily discounted access to non-commercial users, such as
academics, students, or hobbyists. This model can be enforced
through smart contracts, creating a fair and transparent system
where those who derive commercial value from public goods
contribute to their upkeep. This provides a robust solution
to the chronic underfunding of open-source infrastructure
and contrasts sharply with the often ambiguous and legally
complex licensing models currently used for NFTs and other
Web3 assets [59]–[62].

VI. CONCLUSION: TOWARDS A TRUE OWNERSHIP
ECONOMY FOR INTELLECTUAL PROPERTY

The digital revolution, while unlocking unprecedented ac-
cess to information, has simultaneously devalued it by making
perfect, costless replication trivial. This has led to a fun-
damental market failure in the valuation and protection of
intellectual property, a problem that has become acutely urgent
with the rise of a data-driven AI economy. The Decentralised
Intellectual Property (DIP) Protocol offers a comprehensive,
first-principles solution to this long-standing challenge.

By integrating a meritocratic system for data provenance
(ACIP/CVPP), a game-theoretically sound economic archi-
tecture (LATs and Expert Guilds), and a privacy-preserving
technical infrastructure (MPC/ZKML), DIP re-establishes the
concept of verifiable scarcity for digital assets. It moves
beyond the limitations of traditional legal frameworks and the
nascent, often inadequate, IP models of Web3. The protocol’s
ability to solve the data disclosure problem—allowing for the
verification of an asset’s properties without revealing the asset
itself—is the critical cryptographic breakthrough that unlocks
a truly trustless and liquid market for IP.

DIP is more than a technical protocol; it is a foundational
economic and social layer designed for a future where intellec-
tual contributions are the primary drivers of value. It provides
the tools to ensure that the creators of this value—the domain
experts, the researchers, the artists, the data curators—are
fairly compensated and empowered. By transforming intellec-
tual property from an abstract legal concept into a concrete,
liquid, and sovereign digital asset, the DIP Protocol lays the
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groundwork for a more equitable, efficient, and innovative
digital ownership economy.
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